
& Machine Issues for RHIC Spin &

& Goals &

This run:

 \sim Trans. pol. protons colliding at ~ 100 GeV per beam (P > 50%).

 \sim Long. pol. protons colliding at ~ 100 GeV per beam (P > 50%).

✓ Commission acceleration of pol. protons to 250 GeV per beam.

Next Run:

✓ Long. Pol. at STAR and PHENIX with 250 GeV per beam.

& Schedule of Current Run &

✓ 8 Nov: 1 shift shutdown to install AGS polarimeter.

 \sim 9 \rightarrow 26 Nov: Au in RHIC; pol protons in AGS.

 \sim 26 \rightarrow 29 Nov: Shutdown to change RHIC to pol. protons. Run pol. protons in AGS.

 \sim 30 Nov. \rightarrow 21 Dec.: Commission pol. protons in RHIC.

 \sim 22 Dec. \rightarrow 25 Jan.: Physics with pol. protons.

& Commissioning Progress &

- → Power supplies connected to all four snakes.
 - Not yet tested to full field.
 - Not yet tested with beam.
- \sim Polarized beam in AGS ($G\gamma = 7.5$ as of yesterday).
- \mathcal{M} $\beta^* = 3$ m injection test scheduled for this afternoon.
 - Vertical flattening to surveyed positions yet to be done.
- ✓ Spin flipper installed.
 - System previously tested outside ring.
 - Requires ring access when we first power it.

& Status of Future Additions &

- ✓ 4 rotators completed and awaiting installation in RHIC.
- ✓ 5th rotator cold mass being assembled.
- ✓ 6th rotator all four helices cold tested.
- ✓ 7th rotator: 4th helix being cold tested.
- ✓ 8th rotator:
 - 3 of 4 helices stacked and in various stages of wiring the ends
 - o last helix remains to be stacked and wired.
- All helices to be finished by Dec., 2001.
- ✓ Last rotator to be finished by April., 2002.
- ✓ All 8 rotators to be installed in RHIC by Oct., 2002.
 - New AGS Partial snake: Helical
 - o requires more study: warm or supercond.
 - o no definite plan yet.
 - Polarized Jet Target: see following talks

& Other links &

M AGS commissioning plan:
 http://www.rhichome.bnl.gov/People/huang/pp02/FY02plan.htm

✓ Previous talks:
 http://www.rhichome.bnl.gov/RHIC/Spin/spinfigs/figslist.html
 http://www.rhichome.bnl.gov/RHIC/Spin/spinfigs/wwm-rsc1oct01.pdf

✓ Polarization angles at IR's and polarimeters for different energies:
 http://www.rhichome.bnl.gov/RHIC/Spin/spinfigs/100GeV-1snake.html

✓ Other ideas for upgrades:
 http://www.rhichome.bnl.gov/RHIC/luminosity/

& Possible RHIC Upgrades &

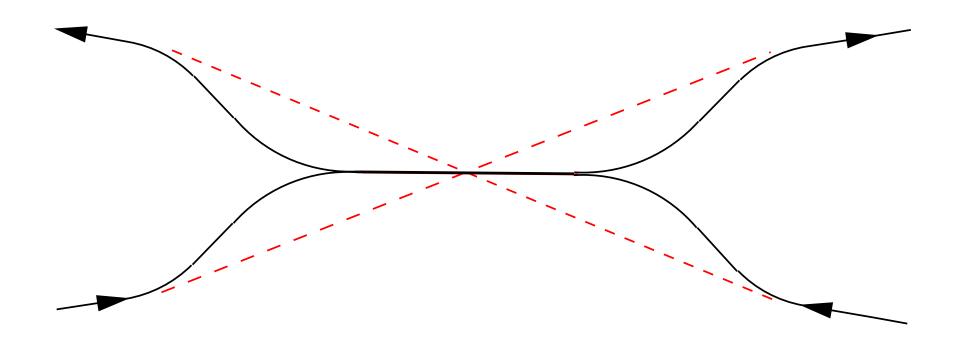
- Luminosity increase RHIC II: electron cooling
 - cool protons at injection (double luminosity over RDM+)
 - spin cooling with polarized electrons?
- eRHIC: polarized electrons and proton collisions
- Energy increase: (20–30%)

Parameters for Proton Collisions

Scheme		RDM	RDM+	RHIC II
Emittance (95%), ϵ	$[\pi \mu \mathrm{m}]$	20	20	12*
IP beta function, β^*	[m]	2.0	1.0	1.0
Number of bunches, M		60	120	120
Bunch population, N	$[10^{11}]$	1.0	2.0	2.0
Beam-beam parameter per IR, ξ		.0037	$.0073^{\dagger}$	$.012^{\ddagger}$
Angular beam size, σ'^*	$[\mu \mathrm{rad}]$	79	112	86
RMS beam size, σ^*	$[\mu \mathrm{m}]$	158	112	86
Peak Luminosity, L_0	$[10^{31} \text{cm}^{-2} \text{s}^{-1}]$	1.5	24	40

^{*} For RHIC II assumes electron cooling at injection to reduce emittance.

[†] For RDM+ assumes only collisions at 3 IR's.


[‡] For RHIC II assumes only collisions at 2 IR's.

Increasing Energy

We have considered the possibility of increasing the energy of beams in RHIC by as much as 30% with a modest trade-off in luminosity. The arc dipoles and quadrupoles were designed with considerable margin. For higher energies (> $100~{\rm GeV/nucleon}$) the minimum β^* may be required to increase as the interaction region triplets saturate. The separator magnets (DX) have the least margin for increased field, so we consider three scenarios: allowing for a small crossing angle with the present DX magnets, upgrading the DX magnets to higher strength, and permitting a crossing angle of $\sim 1^{\circ}$ by removing the DX magnets altogether.

Trajectories of Both Beams Through IR

The dashed lines indicate trajectories without DX magnets. The crossing angle without DX's is $\alpha = 0.18$ mrad.

Conclusions for an energy upgrade

 $25 \rightarrow 30\%$ increase in energy looks possible.

 0° crossing angle requires new D0 & DX magnets.

Higher energies require all new dipoles.

2.5 mrad crossing angle perhaps possible with existing magnets.

DX magnets may only make 10–15% more energy.

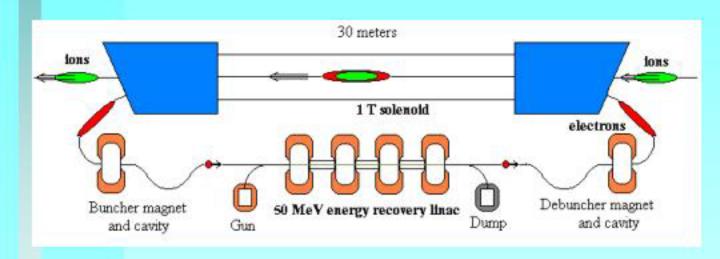
18 mrad crossing angle

DX magnet not needed.

D0 magnet runs at low field $(B \sim 1.6 \text{ T})$.

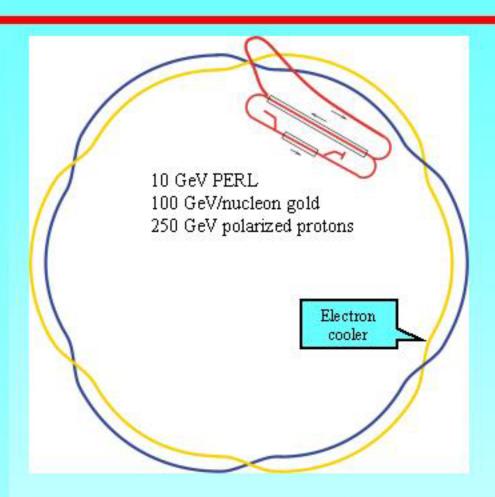
Snakes work in all scenarios.

Spin rotators should work.


For 18 mrad crossing angle: reverse power supplies.

Schematic of the RHIC Cooler

- Energy Recovery Linac
- Buncher debuncher


> x10 increase in the integrated luminosity of RHIC, as well as better accumulation of rare species.

Brookhaven Science Associates Ilan Ben-Zvi Beam Cooling and Related Topics Bad Honnef, May 14-18, 2001

eRHIC – a Polarized Electron on lon or Polarized Proton in RHIC

The Electron-Ion Collider is proposed as an essential tool for research into the fundamental structure of matter:

- •What is the structure of hadrons in terms of their quark and gluon constituents?
- •How do quarks and gluons evolve into hadrons via the dynamics of confinement?
- •How do the quarks and gluons reveal themselves in the structure of atomic nuclei?

Brookhaven Science Associates Ilan Ben-Zvi Beam Cooling and Related Topics Bad Honnef, May 14-18, 2001

